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The local flow patterns and their bifurcations associated with non-simple degenerate
critical points appearing away from boundaries are investigated under the symmetric
condition about a straight line in two-dimensional incompressible flow. These flow
patterns are determined via a bifurcation analysis of polynomial expansions of
the streamfunction in the proximity of the degenerate critical points. The normal
form transformation is used in order to construct a simple streamfunction family,
which classifies all possible local streamline topologies for given order of degeneracy
(degeneracies of order three and four are considered). The relation between local and
global flow patterns is exemplified by a cavity flow.

1. Introduction
There are very few known exact solutions of the Navier–Stokes equations of viscous

fluid dynamics. Milne-Thomson (1957, 1968) obtained the first general solution of
the Navier–Stokes equations. Since this solution is given in the implicit form and is
not resolved completely, it did not receive much attention. Without having to find
a complete solution of the Navier–Stokes equations, global streamline patterns can
often be deduced from an analysis of the flow behaviour local to stagnation points.
This idea has long been familiar in dynamical systems theory and from the topological
viewpoint, flows have been the subject of a considerable amount of work in fluid
mechanics (e.g. see Legendre 1956; Tobak & Peake 1982; Dallmann 1983; Bakker
1991; Dallmann & Gebing 1994; Brøns & Hartnack 1999; Hartnack 1999a; Brøns,
Voigt & Sørensen 2001; Brøns 2007).

In the present work we study streamline topology of two-dimensional incom-
pressible flow near critical points (i.e. instantaneous stagnation points) which are
degenerate in the sense that the Jacobian of the linearization of the corresponding
Hamiltonian dynamical system about such a critical point vanishes identically. This
paper is a follow-up of previous studies (Brøns & Hartnack 1999; Hartnack 1999b)
investigating streamline topology near critical points (simple J �= 0 or non-simple
J = 0) of two-dimensional flow both near and away from boundaries. The first
case concerning simple degenerate critical points (i.e. singular yet non-zero Jacobian
matrix) is examined by Brøns & Hartnack (1999); we consider non-simple degenerate
critical points (i.e. vanishing Jacobian) and thus it is complementary to Gürcan &
Deliceoğlu (2005).

In the case of a zero Jacobian matrix, the local flow patterns can be determined
by considering higher-order terms of the system. Since the resulting number of
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free parameters is large, the bifurcation analysis about a non-simple degenerate
critical point is complicated. However, using the idea of Brøns & Hartnack (1999) of
normal form transformations, one can obtain a much simplified system of differential
equations for streamlines encapsulating all the features of the original system. This
approach has been used to analyse a variety of specific steady flows, for example the
flow in a driven cavity (Gürcan & Deliceoğlu 2005), slip flows (Tophøj, Møller &
Brøns, 2006), a flow close to fixed (possibly curved) walls (Hartnack, 1999b), a flow
close to an interface (Brøns 1994), an axisymmetric flow (Bisgaard, Brøns & Sørensen
2006), and vortex breakdown (Brøns, Voight & Sørensen 1999; Brøns & Bisgaard
2006).

When the corresponding Hamiltonian dynamical system can be put into the
simplest form by normal form transformations, we can obtain all possible degenerate
streamline patterns for given degeneracies. The unfolding of the degenerate patterns,
which means a family of streamfunctions containing a particular degenerate flow, will
be obtained up to codimension three. These degenerate patterns are classified by their
codimension, which is the number of their unfolding parameters. For codimension
two, corresponding to the third-order normal form of the streamfunction, we obtain
a flow pattern having critical points on a triangle connected with a single heteroclinic
connection. In the case of flows near a wall, such a pattern has been predicted by
the theoretical work of Bakker (1991) and Hartnack (1999b), in which two of the
critical points lie on the wall, with the wall itself forming one side of the triangle.
Brøns (1994) observed a similar structure away from boundaries for the flow close
to a given streamline. Also Hartnack (1999a) found this for general unfolding of a
double degeneracy found without any symmetry assumptions for codimension two.
The same structure can be realized away from the boundaries in Stokes flow within
a double-lid-driven rectangular cavity having two physical parameters.

Many authors have studied this type of cavity flow (for example, see Gürcan 1997;
Chien, Rising & Ottino 1986; Meleshko 1996; Shankar & Deshpande 2000). Recently,
Gürcan (2003) investigated streamline topologies near a non-simple degenerate critical
point away from boundaries for small (height to width) aspect ratio A using both
analytic solutions and methods from nonlinear dynamical systems. Gürcan et al.
(2003) considered the analytic solution for the streamfunction, ψ , as a truncated
series of Papkovich–Faddle eigenfunctions expanded about any stagnation point to
reveal changes in the local flow structure as A and S are varied, where S is the speed
ratio of the lid velocities. A particular region of S, A parameter space, A ∈ (0, 3.2) and
S ∈ [−1, 0), was considered to construct a control-space diagram exhibiting several
critical curves representing flow bifurcations at degenerate critical points. We use a
similar idea to construct a bifurcation diagram for the triangle bifurcation. This is
discussed later as an application of the theoretical framework developed in the next
section.

In the present study, we also consider codimension three, corresponding to the
fourth-order normal form of the streamfunction, to investigate streamline topologies.
New flow patterns in Stokes flows are found and illustrated in a bifurcation diagram
which is constructed using the parameterization method. We show that the Navier–
Stokes equations do impose constraints on the local topology of steady flows.

2. Streamline topologies near non-simple degenerate critical points
Consider an incompressible two-dimensional flow far from any boundaries in x,

y-coordinates with corresponding velocity components (u, v). A streamfunction ψ
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exists such that the streamlines are found from

ẋ = u =
∂ψ

∂y
, ẏ = v = −∂ψ

∂x
. (1)

To obtain local information about the flow close to a given point that is taken as the
origin, ψ is expanded in a Taylor series

ψ =

∞∑
i,j=0

ai,j x
iyj . (2)

Let ψ be a given streamfunction satisfying

ψ(x, y) = ψ(−x, y), (3)

which implies that the streamlines are mirror symmetric about the y-axis. Then we
have

ψ =

∞∑
i,j=0

a2i,j x
2iyj . (4)

Hartnack (1999a) derived the normal form for N =3 (codimension two) in the general
case with no symmetries, and analysed it in detail.

The coefficients of the streamfunction can be explained in terms of the physical
aspects, namely, derivatives of viscous stress tensor, pressure and derivatives of
pressure. The viscous stress tensor is

τi,j = μ

(
∂ui

∂xj

+
∂uj

∂xi

)
(5)

where μ is the dynamic viscosity of the fluid. Applying (5) and the Navier–Stokes
equations one can verify the following relations:

u(0, 0) = a0,1, τxy = 2μ(a0,2 − a2,0),
∂τxx

∂x
= 2μa2,1

∂p

∂x
= ρμ(2a2,1 + 6a0,3),

∂p

∂y
= ρa0,1a2,0

⎫⎪⎬
⎪⎭ (6)

where μ, ρ, p are the viscosity, density and pressure, respectively. The relations (5)
and (6) between the expansion coefficients of ψ and the stress are also well-known,
e.g. Brøns (1994) or Hartnack (1999a).

By using (4), equation (1) leads to a dynamical system,

ẋ = a0,1 + 2a0,2y + a2,1x
2 + 3a0,3y

2 + 4a0,4y
3 + 2a2,2x

2y + · · · ,

ẏ = −2a2,0x − 2a2,1xy − 2a2,2xy2 − 4a4,0x
3 − · · · .

}
(7)

If a0,1 = 0 in (7), that is, the component of the vector u vanishes in the degeneracy,
the origin becomes a critical point. Linearizing the system at that point produces the
Jacobian matrix

J =

(
0 2a0,2

−2a2,0 0

)
. (8)

If a2,0 = 0 (i.e det (J) =0) the critical point becomes a simple degenerate point and
higher-order terms of ψ are needed to determine the local streamline patterns. This
case was investigated by Brøns & Hartnack (1999) who considered the degenerate
streamfunction (ψ = a0,2y

2 + ã2Nx2N where N � 2 and ã2N �= 0). In their work all
critical points lie on the x-axis (one on each side of the y-axis) and the shear stress
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(a) (c)

(b)

(d ) (e)

Figure 1. Non-simple degenerate critical points (τxx = τxy = 0, ∂p/∂x �= 0). (a) a0,3/a2,1 < 0;
(b) a0,3/a2,1 > 0; (c) ã0,N/a2,1 < 0, N > 4 is odd; (d); (e) N is even and N > 3.

a0,2 = τxy/2μ �= 0. This is a very restricted case for streamline patterns since the critical
points coincide with the vertices of a triangle; two located on the x-axis (spanning the
base of the triangle) and one located on the y-axis (the ‘off-axis’ point) cannot appear
in unfolding with simple linear degeneracy. Here, we extend the study of Brøns &
Hartnack (1999) to a zero Jacobian matrix, which gives a non-simple degeneracy, by
assuming an extra condition, a0,2 = 0. This condition indicates that a degenerate flow
pattern is formed where the component of the vector u and the shear stress τxy vanish
simultaneously. In addition, it increases the degeneracy with codimension three since
the streamfunction has the third-order terms a2,1 and a0,3 which gives the opportunity
to take the critical points to coincide with the vertices of a triangle, and hence more
possible flow patterns near the non-simple degenerate point may be obtained. From
the assumptions of non-simple degeneracy and the mirror symmetry condition, one
obtains the generic streamfunction corresponding to the type of critical points under
investigation

ψ = a2,1x
2y + a0,3y

3 + a0,4y
4 + a2,2x

2y2 + a4,0x
4 + a0,5y

5

+ a2,3x
2y3 + a4,1x

4y + O((x, y)6). (9)

Two fundamental cases can be considered in equation (9): (i) a0,3 �= 0 and (ii) a0,3 = 0.
In the first case (a0,3 �= 0), we have only two terms of order three. By dropping the
higher-order terms, the degenerate flow patterns can be found for ψ = 0, that is

y = 0, x = ±
√

−a0,3

a2,1

y. (10)

For a0,3/a2,1 < 0, there are six separatrices from a single saddle point, and this case
is denoted a topological saddle, see figure 1(a). When a0,3/a2,1 > 0, there are no
separatrices except y = 0, figure 1(b).
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In case (ii) with a0,3 vanishing identically (i.e. the critical point coincides with the
origin), the streamfunction (9) becomes

ψ = a2,1x
2y + a0,4y

4 + a2,2x
2y2 + a4,0x

4 + a0,5y
5

+ a2,3x
2y3 + a4,1x

4y + O((x, y)6), (11)

where the critical point is nonlinear degenerate to order four and higher-order terms
in the expansion of ψ must be computed. To eliminate higher-order terms in (11) and
for easy determination of the codimension, we use the idea of the normal form theory
of Brøns & Hartnack (1999) by choosing a different generating function preserving
the condition (3). An application of the theory to (11) (the detailed computations
can be found in Brøns & Hartnack 1999 and Gürcan & Deliceoglu 2005), gives the
normal form of (11) as indicated in the following theorem.

Theorem 2.1. Let a0,3, a0,4, ã0,5, . . . , ã0,N−1 become zero. Assume the non-degeneracy
conditions a2,1 �= 0 and ã0,N �= 0 hold, then the normal form of order N � 4 for the
streamfunction (11) is

ψ = a2,1x
2y + ã0,NyN (12)

where ã0,j , j = 5, . . . , N are transformed small parameters.

From the theorem, the local flow topology in the neighbourhood of the degenerate
critical point can easily be obtained. Possible separatrices (dividing streamlines) of
the critical point are given by ψ = 0, that is

y = 0, x = ±

√
− ã0,N

a2,1

yN−1. (13)

First we consider odd N . For N � 5 and ã0,N/a2,1 > 0, the flow pattern is the same
as in figure 1(b); for the pattern corresponding to ã0,N/a2,1 < 0, see figure 1(c). If N

is even and N � 4 for ã0,N/a2,1 < 0, there is a cusp point on η = 0, see figures 1(d)
and 1(e).

2.1. The effect of the Navier–Stokes equations on the topological flow patterns

The above discussion focuses on the existence of a streamfunction for which only
incompressibility is assumed under the mirror symmetry condition. Similar to the
analysis by Hartnack (1999b) for the flow close to a wall we may now determine
which degenerate flow patterns in figure 1(a–e) can be seen in steady or unsteady
Navier–Stokes equations. This can be performed with the vorticity transport equation:

ν∇4ψ =
∂∇2ψ

∂t
+

∂ψ

∂y

∂

∂x
(∇2ψ) − ∂ψ

∂x

∂

∂y
(∇2ψ)

where ν is the kinematic viscosity. Inserting the expansion (2) and collecting terms of
the same order in x, y gives a series of algebraic equations for the ai,j . The equations
to order zero, one and two are

x0y0: v(24 a4,0 + 8 a2,2 + 24 a0,4) = a0,1(6 a3,0 + 2 a1,2) + 2
d

dt
a2,0

+2
d

dt
a0,2 − a1,0(2 a2,1 + 6 a0,3), (14)
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x0y1: v(24 a4,1 + 24 a2,3 + 120 a0,5) = 6
d

dt
a0,3 + 2

d

dt
a2,1

+ a0,1(6 a3,1 + 6 a1,3) + 2 a0,2(6 a3,0 + 2 a1,2) − a1,0(4 a2,2 + 24 a0,4)

− a1,1(2 a2,1 + 6 a0,3), (15)

x1y0: v(24 a1,4 + 120 a5,0 + 24 a3,2) = −a1,0(6 a3,1 + 6 a1,3)

+ a1,1(6 a3,0 + 2 a1,2) + 6
d

dt
a3,0 − 2 a2,0(2 a2,1 + 6 a0,3) + 2

d

dt
a1,2

+ a0,1(4 a2,2 + 24 a4,0), (16)

x0y2: v(24a4,2 + 48a2,4 + 360a0,6) = a0,1(6 a3,2 + 12 a1,4) + 2 a0,2(6 a3,1

+ 6 a1,3) + 3 a0,3(6 a3,0 + 2 a1,2) + 2
d

dt
a2,2 − a1,0(6 a2,3 + 60 a0,5)

− a1,1(4 a2,2 + 24 a0,4) − a1,2(2 a2,1 + 6 a0,3) + 12
d

dt
a0,4. (17)

x1y1: v(72 a3,3 + 120 a1,5 + 120 a5,1) = 6
d

dt
a1,3 − a1,0(12 a3,2 + 24 a1,4)

+ 6
d

dt
a3,1 − 2 a2,0(4 a2,2 + 24 a0,4) − 2 a2,1(2 a2,1 + 6 a0,3)

+ a0,1(24 a4,1 + 12 a2,3) + 2 a0,2(4 a2,2 + 24 a4,0) + 2 a1,2(6 a3,0 + 2 a1,2), (18)

x2y0: v(24 a2,4 + 48 a4,2 + 360 a6,0) = −3 a3,0(2 a2,1 + 6 a0,3) + 2
d

dt
a2,2

+ a0,1(6 a3,2 + 60 a5,0) + a2,1(6 a3,0 + 2 a1,2) − 2 a2,0(6 a3,1 + 6 a1,3)

+ 12
d

dt
a4,0 − a1,0(6 a2,3 + 12 a4,1) + a1,1(4 a2,2 + 24 a4,0). (19)

We start by considering the steady case for N = 3. Under the mirror symmetry
condition (3) and all degeneracy and non-degeneracy conditions in Theorem 2.1
(a2,1 �= 0, a0,3 �= 0), equations (14)–(19) become zero-except part of equation (18)
which is

a2,1 + 3a0,3 = 0. (20)

Equation (20) implies that figure 1(a) is possible for a in steady Navier–Stokes
equation since the local flow topology was determined by the sign of a0,3/a2,1, see
equation (10) whereas figure 1(b) is not possible. Similar limitations was also obtained
by Hartnack (1999b) for the degenerate flow patterns in steady flow. For N � 4
equation (20) does not satisfy the non-degeneracy conditions (a0,3 = 0 and a2,1 �= 0).
Hence the degenerate patterns shown in figure 1(b–e) can not occur in the steady
flow with the mirror symmetry.

In the unsteady case, the mirror symmetry of the flow is generally broken, except at
isolated time instants. For instance, the mirror symmetry of a steady wake is broken
when the flow becomes periodic (Brøns et al. 2007). The relevant nonlinear equation
(18) becomes

6
d

dt
a1,3(t

∗) + 6
d

dt
a3,1(t

∗) − 2a2,1(t
∗)(a2,1(t

∗) + 3a0,3(t
∗)) = 0 (21)

at some time instant t∗. The time derivatives in (21) are identically zero when the flow
is symmetric for all times, but they will in general be non-zero, even at a specific time
instant where symmetry occurs such that a3,1 = a1,3 = 0, which is the relevant case for
all practical purposes, and here no general conclusions about topology can be drawn.
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For Stokes flow (as ν → ∞ in the vorticity transport equation), since the right-hand
side of equations (14)–(19) becomes zero, the left-hand side gives us no information
about a2,1 and a0,N . So the transformed parameter ã0,N can be chosen as free
parameter. Thus, the non-degeneracy conditions in Theorem 2.1 must hold and
the degenerate flow patterns in figure 1(b–e) are possible in Stokes flow.

2.2. Unfolding of non-simple degenerate critical points

The degenerate flow patterns obtained in the previous section will appear only when
the coefficients a0,1, a2,0 and a0,2 are zero. In this section, to determine all possible bi-
furcations close to non-simple degenerate critical points, we consider a small perturba-
tion of these coefficients as the bifurcation value in the streamfunction. The method for
finding the normal form of unfolding of non-simple degenerate critical points proceeds
exactly as in previous studies (Brøns & Hartnack 1999; Gürcan & Deliceoglu 2005).
We omit computations and only give the result by the following theorem.

Theorem 2.2. Let a0,1, a2,0, a0,2 and ã0,3, . . . , ã0,N−1 be small parameters. Assuming
the non-degeneracy conditions a2,1 �= 0 and ã0,N �= 0 are satisfied, then a normal form
of order N for the stream function (4) is

ψN (x, y) = y(σx2 + f (y)), f (y) =

N−1∑
i=0

biy
i, bN−1 = 1, (22)

where

σ =

{
+1 for ã0,N−1/a2,1 > 0,

−1 for ã0,N−1/a2,1 < 0.
(23)

and bi, i = 0, . . . , N − 2 are transformed small parameters.

Using the normal form (22), the corresponding dynamical system,

ẋ = σx2 + f (y) + yf
′
(y),

ẏ = −2σxy, (24)

with the Jacobian

J =

(
2σx 2f

′
(y) + yf

′′
(y)

−2σy −2σx

)
(25)

can be analysed. Evaluating |J| from (25) we obtain

|J| = −4x2 + 2σy(2f
′
(y) + yf

′′
(y)). (26)

The normal form for system (22) contains the x-axis as a streamline for ψ =0. A
simple calculation of |J| shows that critical points on the x-axis corresponding to (24)
for y = 0 are saddle points given by

(x, y) = (±
√

−σb0, 0)

and there is a bifurcation for b0 = 0.
Off the x-axis corresponding to (24) for x =0 critical points satisfy x = 0, f (y) +

yf
′
(y) = 0. Local bifurcation of critical points off the x-axis occurs for 2f

′
(y) +

yf
′′
(y) = 0 and the critical point is a centre if σy and (2f

′
(y) + yf

′′
(y)) have the same

sign. The vorticity is

ω = ∇2ψN = 2σy + 2f
′
(y) + yf

′′
(y). (27)

Since the vorticity depends upon the sign of σy, the vortices or eddy patterns have
opposite rotations with respect to the x-axis.
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(e)

(c)

(b)

(a)

(d )

b1

b3

b2

b0

Figure 2. Illustration of a bifurcation diagram of the third-order normal form for σ = −1
with flow patterns away from the wall. A similar diagram was also found by Bakker (1991)
and Hartnack (1999b) for flows close to a wall.

2.2.1. Normal form of order 3

The third order-normal form of the streamfunction is

ψ3 = y(σx2 + b0 + b1y + y2). (28)

The reader will note that the normal form (28) is almost the same – except the factor
y – as the normal form of Bakker (1991) and Hartnack (1999b), who have the factor
y2. This difference stems from the boundary conditions taken as the fixed wall in
their work. Although, in the present study, the non-simple degenerate critical points
are away from boundaries, the flow patterns and their bifurcations are exactly the
same as in Bakker (1991) and Hartnack (1999b), but with the fixed wall replaced by a
streamline. Also, it is interesting that the normal form (22) has a factor y. This means
that the x-axis is always a streamline. Hence, the symmetry implies that the analysis
by Brøns (1994) of the flow close to a given streamline is relevant here, and it is then
no surprise that the bifurcation diagrams are the same as found in Brøns (1994). The
relevant computations are omitted and bifurcation diagrams are illustrated in figure 2
for σ = −1 and in figure 3 for σ = 1 .
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b0

b1

Figure 3. Illustration of a bifurcation diagram of the third-order normal form for σ = 1 with
flow patterns away from the wall. Hartnack (1999b) presented a similar diagram corresponding
to flow close to a wall.

Figure 2 shows a triangle-bifurcation that consists of three saddle points each of
which lies at the corner of a triangle connected by a single heteroclinic connection.
This pattern is numerically observed in the double-lid-driven cavity flow problem.

2.2.2. Cavity flow

Stokes flow in a double-lid-driven rectangular cavity with two solid walls and two
moving lids is governed by the biharmonic equation for the streamfunction ψ

∇4ψ = 0. (29)

The boundary conditions (no-slip and impermeability) and non-dimensionalization
can be found in detail, for example, in Gürcan et al. (2003). In this problem, there are
two physical parameters: the cavity aspect ratio, A (height to width) and the speed
ratio, S (the ratio of the upper to the lower lid velocities). Following Gürcan (1997)
and Joseph Sturges (1978) the general solution for the streamfunction for any value
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of S and A can be written as

ψ =

∞∑
n=−∞

{Ane
sn(y−A) + Bne

−sn(y+A)}φn
1 (x, sn)

s2
n

, (30)

where the sn are complex eigenvalues and the functions φn
1 are even Papkovich–Faddle

eigenfunctions, satisfying the no-slip boundary conditions on the sidewalls. For the
Stokes flow solution (30) the symmetry condition (3) holds, as the functions φn

1 are
even functions of x. Furthermore, the mirror symmetry condition of the analytic
solution (30) is not relevant for Navier–Stokes flow in which there will be asymmetric
solutions even for small Re.

An and Bn are complex coefficients determined using a truncation technique
employing Smith’s (1952) biorthogonality relation which yields 2N equations for
the 2N unknowns. It is found computationally that for all aspect ratios and
speed ratios investigated, A ∈ [0.05, 7] and S ∈ [−1, 1], as n increases An = O(1/n2),
Bn = O(1/n2) and hence this procedure converges because of the strong influence of
the exponential factor in the solution (30). When the coefficients have been determined,
the streamfunction at any interior point in the liquid is obtained by simply summing
a finite number of terms in the series (30) while ensuring that the magnitude of the
truncation error is acceptably small, see Gürcan et al. (2003). Figure 4 in the present
paper was produced using a truncation number of N =200.

2.2.3. Special Streamline Patterns

A detailed exploration of flow structures and eddy genesis in the double-lid-driven
cavity has been conducted by Gürcan, Wilson & Savage (2006), with particular
attention given to explaining the repetition of bifurcation patterns in terms of local
symmetries in the cavity. Their work and that of Gürcan & Deliceoğlu (2006) showed
a global bifurcation with a single heteroclinic connection between three saddle points,
each lying at the corner of a triangle. These flow bifurcations are good examples for an
application of the above theoretical work. The sequence of flow patterns reproduced in
figure 4 shows more clearly the construction and breaking of the triangle-bifurcation,
see figure 4(b–d).

By tracking these bifurcations we produce a control-space diagram via the following
scheme: We first determine the position of stagnation points (say (xs, ys)) in the cavity
which are solutions of

u((x, y), S, A) = v((x, y), S, A) = 0,

by using a bisection method with a tolerance of 10−10 for each A and S where A

and S are varied with very small steps in 4.5 <A< 4.75 and −0.0035 < S < −0.002.
Then to determine the nature of a particular stagnation point (saddle or centre)
the streamfunction (30) is expanded as a Taylor series about that point, see Gaskell
et al. (1998). To obtain the triangle-bifurcation (b2 in figure 5) we examine the values
of the series (30) at the saddle points. If (30) gives the same values at those points,
then b2 occurs. The saddle node (cusp) bifurcation curve, b3, is obtained when a
saddle and centre are born simultaneously on x = 0 in the cavity at which u changes
sign. Finally, as the saddle points on either side of x = 0 (see figure 4d) approach the
centre on x = 0 and meet, there is a bifurcation (b1 in figure 5) producing a saddle on
x = 0 (figure 4e).

Figure 5 shows a control-space diagram with bifurcation curves which exhibit local
symmetry about the line Sc = −0.0028. For S <Sc, the flow development sequence
in the middle eddy follows a similar pattern to that in the upper eddy in the
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Figure 4. Flow structure development in the upper section of the double-lid-driven cavity as
A increases from 4.6 for S = −0.0031; in (a) a full cavity is shown with A = 4.6, and in (b–e)
enlarged views of two parts of cavity are shown. The first is an enlarged view of the rectangular
part in (a) and the second is an enlarged view of the oval part in (b–e) for (b) A = 4.624,
(c) A = 4.6321, (d) A =4.645, (e) A =4.678.

cavity for S > Sc, see streamlines in the cavities at the bottom of figure 5. When
S = Sc the upper and middle eddies become symmetric about their shared separating
streamline (for example see the top cavity in figure 5) because the ratio of the upper
lid velocity (Sc) and the separating streamline velocity near the lower eddy (say
Sl = u(xl, yl) where (xl, yl) is the position of the separating streamline II) is equal
to Sc/Sl

∼= −1. The pattern in the top cavity for (A, S) = (4.625, Sc) represents the
pattern at an intersection point of the bifurcation curves in figure 5 that shows the
double symmetry in the upper part of the cavity.

In conclusion, we found that the flow bifurcations (b1, b2, b3) in figure 5 are
exactly the same as in those of figure 2. In each figure, corresponding flow patterns
and bifurcation curves are labelled with the same letters. The pattern at the origin
(b0, b1) = (0, 0) in figure 2 is exactly the same as the pattern about the point P in the
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Figure 5. Control-space diagram for the double-lid-driven cavity when 4.5 <A< 4.75 and
− 0.0035<S < −0.002 . The flow patterns associated with each region are referred to figure 4
and three typical flow patterns are illustrated.

top cavity in figure 5. The line Sc = −0.0028 in figure 5 corresponds exactly to the
line b1 = 0 in figure 2. When the Sc is crossed there is no change in flow topology in
the enlarged oval part of the cavity and double symmetry can only appear.

2.2.4. Normal form of order 4

The fourth-order normal form of the streamfunction is given by

ψ4 = y(x2 + b0 + b1y + b2y
2 + y3). (31)
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The corresponding dynamical system with codimension two is

ẋ = x2 + b0 + 2b1y + 3b2y
2 + 4y3,

ẏ = −2xy.

}
(32)

The locations of the critical points on the x-axis (y = 0) are x = ±
√

−b0 and there is
a bifurcation line for b0 = 0.

Off the x-axis (x = 0), local bifurcations occur when

b0 + 2b1y + 3b2y
2 + 4y3 = 0,

b1 + 3b2y + 6y2 = 0.

}
(33)

Combining these, one obtains

96b3
1 − 27b2

1b
2
2 − 324b1b2b0 + 324b2

0 + 81b0b
3
2 = 0. (34)

The conditions for global bifurcation are

∂ψ

∂y
(0, y) = b0 + 2b1y + 3b2y

2 + 4y3 = 0,

ψ(0, y) = b0 + b1y + b2y
2 + y3 = 0,

⎫⎬
⎭ (35)

and combining these gives

27b2
0 − 18b0b1b2 + 4b0b

3
2 − b2

1b
2
2 + 4b3

1 = 0. (36)

To analyse flow patterns in three parameters is rather academic. Therefore, we analyse
first the case b1 = 0 and then consider b1 > 0.

To reduce parameter number we can use the parameterisation

b0 = k(b1/3)3/2 and b2 = l(b1/3)1/2. (37)

We find that bifurcation sets for b1 �= 0 become:

k = 0 and 32 − 3l2 − 12kl + 4k2 + kl3 = 0, (38)

and global bifurcations occur for

27k2 − 54kl + 4kl3 − 9l2 + 108 = 0. (39)

The complete bifurcation diagram is shown in figures 6 and 7. The existence of the
above structure allows us to recognize different flow patterns in Stokes flow, but
the degenerate flow patterns figure 1(d) 1(e) cannot be realized physically since they
require some parameters to be zero.

3. Conclusion
The results of the present study show that the normal form method which was

first applied by Brøns & Hartnack (1999) for the simple degeneracy works also
for the non-simple degeneracy under the mirror symmetry condition. The normal
form transformation gives us a framework for investigating the process of streamline
pattern development and their bifurcations up to codimension three. We extend the
classification of possible local streamline topologies in two-dimensional incompressible
flow by using the normal form transformation. To our knowledge the degenerate flow
pattern ‘the cusp on the axis’ (fourth-order non-simple degeneracy) and its bifurcation
patterns has not been previously observed theoretically in Stokes flow.
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b0

b2

Figure 6. Bifurcation diagram of the fourth-order normal form with b1 = 0.

For codimension two, the normal form and corresponding bifurcation diagrams
which were found near the wall by Bakker (1991) and Hartnack (1999b) are also
observed away from the wall. The theoretical results are applied to analyse numerical
solutions of Stokes flow in a cavity flow as a configuration physically accommodating
patterns corresponding to the normal form of order 3 and we review some of the
results of Gürcan & Deliceoğlu (2006).

The Navier–Stokes equations in which there will be asymmetric solutions even for
small Re restrict the local flow topology under the symmetry condition (3). It was
shown that for codimension three all flow patterns and their bifurcations away from
the wall occur in Stokes flows, and in (unsteady) ‘Navier–Stokes’ flows no general
conclusion about topology can be drawn. In contrast to the simple degeneracies, we
have seen that the interaction of all vortices or eddy patterns have opposite rotations
with respect to the x-axis in non-simple degeneracies. These feature provides some
interesting and important patterns that cannot seen near the simple degeneracies. For
example, the particular ‘triangle’ heteroclinic connection and a homoclinic connection



Streamline topology near non-simple degenerate critical points 431

l

k

Figure 7. Bifurcation diagram of the fourth-order normal form with b1 > 0.

on the x-axis are just as an one of the unfoldings of the third- and fourth-order
non-simple degeneracy.

The authors are grateful to all reviewers for their helpful suggestions.
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